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Abstract

The thrust of this project has been two-fold, namely, (1) to improve the
performance of existing models of Earth’s gravitational field, mainly with
respect to speed of evaluation; and (2) to develop new multiresolution esti-
mation techniques to produce new gravitational models.

We have constructed two local models of the gravitational field, both of
which map the surface of a sphere to the surface of a cube. These models
differ in the choice of basis functions. The first uses multiwavelets to represent
the gravitational field at a fixed distance from Earth, and the second model
uses B-splines. Both models use polynomial interpolation to compute the
variation in height of the gravity field.

Significant progress has been made towards implementing a procedure
for estimating gravity models directly from physical measurements. We have
developed a new estimation algorithm, a multiresolution rank-revealing QR
decomposition. This algorithm produces the “minimum detail” solution in-
stead of the usual minimum norm solution of the ill-conditioned least squares
problem.

A basis for bandlimited functions has been constructed using a new
method for computing the generalized Gaussian quadratures for exponen-
tials. These bases are-closely related to the prolate spheroidal wave functions,
and we plan to create the next generation of models for evaluation and esti-
mation of the gravity field using such bases. These bases are nearly optimal
in terms of the number of coefficients necessary to represent a bandlimited
function.

In addition, we have begun work on a new type of ODE solver (spectral
deferred corrections), which will work in conjunction with the new gravity
models, and should provide further improvements to speed and accuracy of
computing satellite ephemerides. :

New gravity models of the type described here were transferred to Space
Warfare Command in Colorado Springs.




1 Introduction

We recall the form of the spherical harmonic model of the gravitational po-
tential, ‘

N n
o veen =2 s (B) vea), )

n=2
where GM 1is Earth’s gravitational constant, 7 is the length of the radius
vector from Earth’s center of mass, R is the radius of the Earth (either
equatorial or polar radius), ¢ is geocentric longitude and 6 is geocentric
latitude. The spherical harmonic Y, (¢, 8) is defined as

Ya(9,0) = Z P (sin6) (C cosmeo + 5, sin m¢)

m=0

where C*;,ﬁ,ﬁ, ... ,—C_:,g,ll, ..., 5., for 2 < n < N are normalized coefficients,
and P, is the normalized associated Legendre function of degree n and order
m. The parameter N in (1), the number of terms retained in the model,
determines the order of the model. For example, N = 41 corresponds to a
41st order model, and so on. As is well known, (1) is a solution of the Laplace
equation in spherical coordinates (7, ¢,8), r > R

The cost of evaluating V' at a point (r, @, 8) via (1) grows rapidly with the
number of retained terms. Namely, if V terms are retained in (1) then the
number of operations to evaluate V is proportional to N2. Thus, changing
the model from that using 20 terms to the model using 200 terms requires
roughly 100 times more operations.

We observe that there are several sources of inefficiency in using this rep-
resentation. First, the functions (R/r)*, n = 2,3, ... are “nearly parallel,”
which means that the-organization of the sum in (1) is not efficient for com-
puting. Second, the functions Y,(¢, ) are global and thus cannot model the
regional variations in the Earth’s geopotential with the detail and economy
provided by local functions such as splines or wavelets. Unlike global func-
tions, the resolution of local functions can be adjusted to the level required
to accurately model local features, a process known as “adaptive sampling.”

In what follows we use the terms “local” and “multiresolution” representa-
tions. In a local representation the elementary building blocks are basis func-
tions with localized support, e.g. B-splines. These representations typically
do not use adaptive sampling; rather, the resolution is uniform throughout
the model. Multiresolution representations also use localized basis functions
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(e.g. wavelets) but, in addition, can use adaptive sampling to more efficiently
accommodate different variability of the geopotential in different regions.

2 Local Models of the Gravity Field

Two local models have been developed under this grant, but before describing
them it will be advantageous to provide background by describing an earlier
model, developed under an earlier grant.

2.1 Doubly Periodic B-spline Model

The local model developed under DARPA grant Efficient Representation

of the Earth’s Gravitational Field comprises a set of spherical shells, each

corresponding to a fixed value of the radial distance 7. On each shell, the -
potential field (or one of its derivatives) is modeled by a doubly periodic

B-spline expansion. For purposes of illustration, let ry be a fixed value of 7.

To model the field on a spherical shell at r = ry we construct the following

representation,

M-1M-1
T0,¢a kl/BMa:—'k):B(My_l) (2)

k=0 =0

...4

where 27z = 0 and 27y = ¢. In (2), B denotes the B-spline (compactly
supported, piecewir. polynomial function) of sufficiently high order, and 1/M
is the length of th= iargest interval on which the spline is a polynomial. The
choice of the integer M and the order of the B-splines depends upon accuracy
and memory requirements and both are adjustable parameters in the model.

The cost of evaluating the B-spline series (2) is a constant that depends
on the order of the spline, and is proportional to (mdeg + 1)2, where mdeg
denotes the degree of the spline. Thus, for example, if we use B-splines of
degree seven, then roughly sixty-four multiplications are required to evaluate
the right-hand side of (2). Note that this cost is independent of the parameter
M, which instead governs memory storage requirements, with its magnitude
being dictated by the required precision. It is obvious from (2) that M?
coefficients must be stored in computer memory for each spherical shell. The
values of M and mdeg are in inverse proportion; the larger is M, the smaller
is mdeg, and vice versa, in order to achieve any prescribed accuracy. Thus,




the issue of parameter selection becomes a trade-off between computational
speed and computer storage requirements.

Now let us describe how we use (2) to obtain the values of the geopotential
and its derivatives at locations between the tabulated shells. Suppose that
we want to evaluate at a distance ' above the Earth’s surface, and that
re < r' < Tgy1, where 1y and 74y correspond to consecutive, tabulated
shells. We simply compute the value of the potential on the shells at r
and 74, at the proper locations in (¢,6), then construct the interpolating
polynomial that joins these two points and evaluate this polynomial at 7 = .
This is the procedure for a linear interpolating polynomial. In practice, we
ordinarily use a higher order polynomial, for example fifth degree, which
requires evaluation on more spherical shells but the procedure is otherwise
identical. '

The total cost of evaluation per point for the B-spline model can now be
made precise. If the degree of the B-spline used is mdeg, and the degree of '
the polynomial used to interpolate between shells is ideg, then the total cost
of evaluating the model at a point is C * (ideg + 1) * (mdeg + 1)?, where C
is a constant. Note that ideg is also an adjustable parameter in this model,
and its value can be made smaller if we are willing to make M larger, as
described above for the parameter mdeg. '

We now outline the steps in computing the coeflicients for the B-spline
expansion (2). For efficient and accurate computation of the coefficients, it
is convenient to extend the potential function V' so that it is 2m-periodic in
both # and ¢. This is done by defining

V(ir,¢+m,—m—8), for —-m <0< —7/2
Vo(r,9,0) = V(r, ¢,9) , for —7/2 <0 < 7w/2
V(ir,g+n,m—0) , for m/2<8< 7.

for @ € [—m,x] (V is already 27-periodic in ¢).

There are several useful bases for splines, in addition to the “canonical”
B-splines, and in this model generation step we also use the interpolating
splines, L(z). Interpolating splines satisfy L(0) = 1, and L(n) =0ifn is a
non-zero integer. This property enables us to first write the spline expansion

as
M-1M-1 M9 M
V(re,$,0)= > > AxL (—-—k)L(——2¢—l>

k=0 1=0 T

with Az, = V(ro, d1,0k), where 6, = 2wk/M and ¢ = 2ml/M. To change
the basis from interpolating splines (which are difficult to evaluate) to the
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B-splines, all we have to do is apply an FFT to the coefficient matrix {Ags},
modify the Fourier transform by a factor, then apply the inverse FFT to
obtain the B-spline coefficients in (2). As a result, the representation (2)
interpolates the potential function V'(r.$,8), for r = ry, on the equispaced
grid (2nk/M,2nl/M).

Once the representation (2) for vhe geopotential is obtained, it is easy
to build its reduced version, which is obtained by simply removing high
frequencies from the model by application of multiresolution decomposition
to the B-spline expansions. To describe the construction process, let us
assume that M = 277, where j < 0 is an integer, and denote the coefficients
in (2) by {st,}, to indicate that they belong to the scale j.

The result of applying one step of multiresolution decomposition is to
compute the coefficients {s1}'} on the next coarser scale (j + 1) (i.e. the
scale corresponding to double the original step size) from the coefficients on
scale j. From M coefficients per row on scale j we obtain M/2 = 27U+~
coefficients per row on scale (j + 1). The steps are as follows:

1. Apply an FFT to the coefficient matrix {si,} to obtain the matrix
{5k}
2. Apply a one-dimensional decomposition in each index, i. e. first on rows,

then on columns, of the matrix {.§i,} The one-dimensional decompo-
sition is defined as follows,

v 1 (. /2mm\ .- . [2mm i
it =5 {0 (57 ) a4 10 (S +7) e}
form =0,...,M/2—1, where the function m, is a 27-periodic function

associated to the B-spline.

3. Apply an inverse FFT to the matrix {8,'} to obtain the coefficient
matrix {s]7'} on the coarser scale.

Removal of the higher frequencies from the model in this manner is more
stable than simply truncating them as is done, for example, in truncation of
the WGS84-70 model to obtain the WGS84-41 model [11]. If desired, Steps
1-3 above can be repeated, to obtain coefficients {sﬁz}, and so on.




2.2 Multiwavelet Cube Model

In this model, the surface of the sphere is mapped to the surface of a cube
and, instead of spheres, the concentric shells form a sequence of nested cubes.
A point on the surface of a sphere is mapped to a point on the “referciice
cube” (which has faces perpendicular to the coordinate axes and at a distauce
of one unit from the origin) using the following simple algorithm.

Input coordinates (r, ¢,6) on the spherical surface of radius r.

Compute (z = rsinfcos¢, y =rsinfsin¢g, z = rcosb).

Find d = max{la], |y} ]2I}.
Coordinates on the reference cube are (§,7,¢) = (z/d,y/d, z/d).

Geometrically, we can think of a ray emanating from the ‘origin, and inter-
secting the sphere and the reference cube each at a single point. These two
points are then mapped one to the other. '

We next place an equispaced rectangular grid on each face of the cube,
which can then be mapped backwards onto the sphere. We note that dis-
tortion of the grid on the spherical surface caused by the curvature of the
sphere is limited, and does not cause any problem near the poles.

The rectangular grid partitions each face of the cube into a number of
square subdivisions, and we build a wavelet representation of the geopoten-
tial on each subdivision. Currently, the basis functions we use are the mul-
tiwavelets (see [1] and [2]), chosen because they form an orthonormal bass
on a square subdivision without overlapping into adjacent subdivisions.

The scaling functions in a multiwavelet basis are classes of orthogonal
polynomials, for example Legendre polynomials. Formulas for interpolat-
ing the geopotential at the Gaussian nodes within the subinterval are easily
obtained using the Gaussian integration rules.

To evaluate the field between tabulated shells, we construct the La-
grangian polynomial that interpolates the values on several adjacent shells.
Alternatively, we can also use expansions of multiwavelets to represent the
variation in height of the gravity field.

2.3 Spline Cube Model

Concerning performance of the two models described thus far, two observa-
tions have been made:




1. the multiwavelet cube model has a more efficient memory access than
the doubly periodic spline model, resulting in better speed for evalua-
tion;

2. the doubly periodic spline model requires substantially fewer coeffi-
cients to achieve the same accuracy as the multiwavelet cube model.

The model described in this section has been successful in combining the best
features of both these models.

To evaluate our models it is necessary to interpolate between the tabu-
lated shells. To do this we must evaluate the two-dimensional expansions
at a given point on several consecutive shells. However, the computation
involves only a few coefficients on each shell, and speed is gained in memory
access if these can be stored closer together.

This can be done by subdividing the surface into a number of “panels”
which, taken together, cover the spherical surface. Panels for the same angles
but different heights are stored contiguously in memory, which allows for
faster memory access.

In this model, a partition of the spherical surface is accomplished by
subdividing each spherical shell into six panels, which may be regarded as
the six faces of a cube. This is done in such a way that the grid spacing
for the polar regions is the same as that for the equatorial regions, and no
excessive distortion of the grid on the spherical surface occurs.

To obtain six square panels, we subdivide the surface of a sphere as
indicated in the following table. '

|| angle ranges | x-coordinate | y-coordinate |
1|-nr<é¢<-7n/2, —-n/4<0<7/4 ap+3 af

21 —m/2<¢<0, —-w/4<0<L<7/4 ap+1 of

3 0<p<n/2, —-w/[4<6< /4 ap—1 af

4| w2<¢d<m, -w/4<0< /4 ap—3 alb

5 [y <1, |lw|>1,8>0 atan~! (w) £2 | —~asin™ (v)
6 [yl <1, |w|>1,6<0 atan~T(w) £2 | —asin™ (v)

where o = 4/7, w = tanf/cos ¢, and v = cosfsin$. Coordinates on the
face of each panel are (z,y), where —1 < z,y < 1. The panels designated 5
and 6 contain the north and south poles, respectively. For the z-coordinate
in panels 5 and 6, we use the minus sign if w > 0 and the plus sign if w < 0.




We note that the B-spline expansion for each panel overlaps its immediate
neighbors. Thus, to use this model for the estimation problem, we would need
to add a certain number of equations to ensure that the representation near
the boundaries of each panel matches with that of its neighbors.

Coefficients for this model are computed in the same manner as described
above for the doubly periodic spline model. “After computing coefficients
for a doubly periodic B-spline expansion to cover the sphere, coefficients
sufficient to cover each of the first four panels are extracted and stored. The
sphere is then rotated, another doubly periodic expansion is computed, then
coefficients are extracted to cover the two remaining panels. The rotation is
necessary to avoid excessive distortion of the grid near the poles.

We note that the gravity force field for the polar regions must be stored
in rectangular coordinates. In the spherical coordinate system, the represen-
tation of a vector at one of the poles is not unique: .the components of the
vector can vary depending on the orientation of the spherical unit vectors. ‘
This orientation depends on the angle ¢, which is indeterminate at the poles.
Thus, although the vector at the pole is unique, its projection onto spherical
unit vectors is not.

2.4 Performance Results

The table below contains performance results related to the doubly periodic
spline model and the spline cube model. The parameter “model order” in
the far left column refers to the number of terms vetained in the spherical
harmonic model. The next column contains the size of the spherical harmonic
model in megabytes. As can be seen, the spherical harmonic model requires
very little storage space. The next pair of columns contains information
relating to the doubly periodic spline model, namely the size in megabytes
and speed-up factor. The speed-up factor is obtained by measuring the time
required to compute the gravity vector at a large number of points, using
both the spline model and the spherical harmonic model, then dividing the
time for the spherical harmonic model by the time for the spline model. The
final pair of columns contains size in megabytes and speed-up factor for the
spline cube model. (It turns out that the multiwavelet cube model, as it is
currently implemented, requires excessive memory storage, and we chose not
to report performance results for this model at this time.)




Model Size of Doubly Periodic Spline Cube
Order | Sph Model Size | Speed-up | Size | Speed-up

18 0.003 4.65 23 10.3 3.6
41 0.013 33.10 9.0 27.9 19.5
70 0.038 76.48 22.9 70.3 56.1

The WGS84 spherical harmonic model [11] was used for these tests, with
agreement to about 107!! between spherical harmonic and spline models
being maintained throughout.

Note that storage requirements for both spline models, while much larger
than what is needed for the spherical harmonic models, are nevertheless
quite reasonable. Furthermore, the spline models have achieved a significant
speed-up in evaluation time over the spherical harmonic models. Note also
that the spline cube model, which was developed during the past year, has
gained better than a factor of two in speed over the previous spline model,
in addition to reducing memory requirements somewhat. '

3 Estimation of the Geopotential

Let us explain briefly why it is necessary to develop new estimation al-
gorithms. The process of estimation (model building) of the geopotential
presents several problems. First, the spatial frequency bandwidth is chang-
ing both as a function of the distance from the Earth and the location on
the Earth’s surface. Second, the data are typically collected on an unequally
spaced grid and, as a result, the condition number of matrices involved in
solving the estimation problem is usually very high.

Within the spherical harmonic representation, the problem of increasing
the accuracy of the model was addressed by increasing the number of terms in
the expansion. The difficulty with this approach is that spherical harmonics
(being global, oscillatory functions) depend on cancellation (destructive in-
terference) to achieve the approximation—changing even a single coefficient
in the model has a global effect. In consequence, algorithms for model gener-
ation are expensive, since we have to solve systems with dense (full) matrices.
It is difficult, if not impossible, to adjust the spatial frequency contents lo-
cally. In particular, there is a real problem in incorporating observations of
the gravitational potential near the surface (e.g on the ground) with those
obtained on satellites, apparently due to the different spectral contents of




the data.
Our goal has been to develop multiresolution models of the Earth’s grav-

itational potential that do not suffer from the difficulties for use and es-
timation outlined above. Multiresolution models use basis functions (e.g.
wavelets) with localized support in both space and spectral domains. This
allows us to generate models where changes in most of the parameters will
produce only local changes in the geopotential (up to any finite but arbitrary
accuracy). _

For a gravitational field this statement might sound strange since such
fields always give rise to long range interactions; in particular, there are
no negative masses and interaction appears to be global. It is easier to
understand this point using the analogy with electrostatic fields which are
mathematically equivalent but allow us to consider negative charges. In this
case one can consider potentials consisting solely of multipole “masses” of
high order for which the interaction decays very rapidly. This can occur if
the masses (charges) are so arranged that the lower order moments cancel.
Thus, the effects of these multipoles can be ignored beyond a relatively short
distance. Wavelets can be viewed heuristically as high order multipoles.

The use of basis functions with localized support provides another ben-
efit: the matrices for estimation of the model parameters will be sparse (up
to any finite but arbitrary accuracy), which gives us a chance to develop
fast algorithms for their inversion. The coefficients of these models will be
estimated directly from the observed data.

3.1 Multiresolution. QR Algorithm

Let us describe our approach to the estimation problem in more detail. As
it is well known, the least-squares solution to a system of linear equations is
characterized by the following

Theorem: Let A be a real m x n matriz and b a vector of length m. If x

satisfies
ATAx = ATb

then, for any vectory,

|Ib — Ax|l2 < [[b— Ayll-

It is typical, in practical estimation problems, for the matrix product ATA to
be badly conditioned. If this is the case, or if the matrix product has a non-
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trivial null space, then there is more than one solution to the least-squares
problem. Using a standard QR factorization, it is typical to obtain that so-
lution to the least-squares problem that minimizes the Lo-norm. However,
for the real-world estimation problem, such solution may be meaningless.
We introduce a new approach, based on a physical heuristic, namely that
the solution we desire is that with the minimum amount of detail. That is,
we attempt to minimize the high frequency content of the solution. Such
procedure is feasible in a multiresolution setting, where frequency content is
conveniently split across several scales, allowing us to work with each fre-
quency range separately. The Multiresolution Rank Revealing QR algorithm
we introduce is based on a standard Gramm-Schmidt QR factorization but
with two new features: (1) unknowns are the wavelet coefficients, and (2)
pivoting is restricted to appropriate subspaces.
As an example, consider the following system of linear equations,

Ax=vy, (3)

where A is a real (m x n) matrix, and we explicitly assume m < n. Let us
express this equation in the following equivalent form,

A=y, ' (4)

where A = AWT, & = Wx, and W denotes the wavelet transform. Since
the transform is orthogonal, the product WTW is an identity. The operation
AWT performs wavelet decomposition along rows of the matrix A, and thus
the columns are effectively organized into subbands corresponding to different
scales. We next construct the factorization

AE=QR, . (5)

where Q is an orthogonal (m x r) matrix, R is an upper triangular (r x
n) matrix, and r is the (numerical) rank of A. Note that r < m. By
construction, we have QTQ = I,, which denotes the (r x r) identity matrix.
The matrix E in (5) is a permutation matrix, and serves the purpose of
re-ordering the columns in A so that the 7 columns in Q, which form an
orthonormal set, are formed from those columns in A which are largest in
{,-norm.
The solution to (4) is now obtained by defining

%= ERQy, (6)
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where R is chosen to satisfy RR = I,. Since the row dimension of R is strictly
less than the column dimension, there is more than one possible choice for
R. and we describe our choice below. Substituting (6) into (4), we have

-

A% = (QRET)(ERQT)y
= Q(RR)Q"y
QQ)y.

If r = m, then QQT is an identity, and we have y — Ax =0. If »r < m, then
QQT is a projection, and we have

lly — Ax|| <e

if y lies in, or nearly in, the appropriate subspace.

Let us now describe the procedure for constructing Q. To begin with, we -
work only with the columns of averages on the coarsest scale in the trans-
formed matrix A. From among these, we choose the column with largest
l,-norm, and denote this column vector by a;,, where 7; is the actual column
index. The first column of @, denoted q;, is obtained as

7 Tl
Thus, q¥q; = 1, and we now multiply all remaining columns of A by (I —
a:q7), shich is projection onto the orthogonal complement of {a:}. The
result cf this operation is that all remaining columns (excepting a;,) in the
modified matrix A are orthogonal to q;.

Now repeat this step, again considering only columns within the subband
containing averages on the coarsest scale, and choosing from among these
the one with largest l>-norm, which we denote by a;,. Obtain

aj2
q =
Hajz” ,

then multiply all remaining columns of Aby (I -q.q}), so that all remaining
columns of A are orthogonal to {q;,qs}. We repeat this process until one
of two things happens. Either we have “used up” all vectors in the subband
of averages, or the remaining vectors in this subband are smaller in norm
than the prescribed cutoff value. In either case, we then go to the subband
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containing column vectors of wavelet coefficients on the coarsest scale, and
repeat this procedure When we have either “used up” all vectors in this
subband, or the vectors remaining in this subband are all smaller in norm
than the prescribed cutoff, then we move to the subband which contains
column vectors of wavelet coefficients on the next finer scale. This procedure
is repeated until all remaining columns in A, which are being overwritten at
each step of the process with their projection onto the orthogonal complement
of the column vectors in Q, are smaller in norm than the prescribed cutoff
value. At this point, we have r vectors in @ which form an orthonormal basis
(to within prescribed precision) for the column space of A.

The matrix R contains coefficients which represent the columns of the
product AE with respect to the orthonormal basis in Q. In particular, the
jth column of R contains the coefficients that represent the jth column of
AE with respect to the orthonormal basis {qi, . ..,qr}, and by construction
R is upper triangular. To construct R, so that RR = I, we invert the leading
r columns of R which, taken together, form an upper triangular (r x r) block,
and thus obtain the first 7 rows of R. We then set the remaining (n — r)
rows of R to zero. This has the effect of selecting only 7 non-zero entries
in the solution vector %X, while setting the remaining entries to zero. The
algorithm automatically selects which entries in X correspond to the most
heavily weighted columns of A, which for physical data should correspond
to the lower frequency features of the right-hand side. We also emphasize
the selection of lower frequency components by beginning the procedure with
columns on the low {requency side and proceeding from lower to higher.

Figures 1-3 on the following pages compare results of Multiresolution
QR and a standard QR for the following interpolation problem. In (3), the
right-hand vector y represents values of a function, say y(t), at a set of
points {t,...,tm}. Thus, y = {y1,-..,Ym}, where y; = y(t;). We build an
expansion using multiwavelet scaling functions on some scale, which takes
the form

Y(t) = nz—:ll‘j_,_1¢(’nt - ]) .

—~
Imposing the condition Y (¢;) = y;, leads to the system of equations

n—1
> ziae(nti — j§) =i,
j=0
and comparing with (3) we see that the entry a;; of the matrix A is given
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by oé(nt; — j), and the unknowns {zi,...,z,} are the coefficients of the
expansion.

We choose the scale of the expansion so that the number n of coefficients
on the finest scale is much larger than the number m of data points. How-
ever, the algorithm will select a smaller number of coefficients to represent
the final solution. If the data is smooth, then the matrix A will have low
numerical rank at the required precision, and the final representation will be
correspondingly sparse.

The next three pages contain examples which compare the results of the
approached outlined above with results of the usual least squares solution

method.
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4 The Next Generation of Gravity Models

The choice of basis function used to represent the gravity field is of enormous
importance since this choice has the single greatest influence on the structure
and performance of algorithms that will be used for evaluation and estimation
of the model. Under this grant we have developed a new type of basis for
estimation of gravity fields, though we have not yet developed the actual
models, and we explain below the main points of the new construction. We
foresee that the next generation of gravity models will use such bases in
conjunction with the algorithms discussed above.

4.1 Optimal Bases on an Interval

Let us first provide a brief description of the prolate spberoidal wave functions
(PSWFs) introduced by Slepian et. al. [20, 16]. ‘
The PSWFs are defined as the eigenfunctions of the operator F;, where
F, is defined by
1 .
F(9)(z) = [ = g(t)it, (7)

-1
where F, : L?[-1,1] — L?[-1,1], and c is a positive real constant (band-
limit). The PSWFs satisfy

Awi(@) = [ w0 dt, ®)

where the eigenvalues };, j = 0,1,2,..., are all non-zero and simple, and are
arranged so that |A;| > |Aj+1|. The eigenvalues ); are either real or pure
imaginary depending on the parity of the eigenfunction ;. These eigenfunc-
tions are also eigenfunctions of the operator Q. = 5 F; F and satisfy

1 [l sinc(z —1t)
b = = 22 bt dE
/J'leJ(x) 71'[—1 (x—t) ¢J()d ’ (9)
with eigenvalues
c .
uj=%|/\j[2, j=0,1,2,.... (10)

For large c the first approximately 2¢/7 eigenvalues y; are close to 1. These
are followed by O(logc) eigenvalues which decay exponentially fast from 1 to
almost zero. The remaining eigenvalues are very close to zero.
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In addition, there exists a strictly increasing sequence of real numbers
no < M < My < --- such that the functions 1, in (8) are eigenfunctions of the
following differential operator [20],

L’@/Jj = (-—(1 - I2) -C% + 21‘% + 62$2> ’([1](.1) =1 ’%(.’L‘) . (11)
The eigenfunctions of L have been known as the angular prolate spheroidal
functions before the connection with (8) was discovered [20]. We note that,
in the limit ¢ — 0, it follows from (11) that %; become the Legendre poly-
nomials. '

For any n > 0, the first n functions ¥, =0, ...,n—1, form a Chebyshev
system [14, 15]. In particular, the number of zeros of %; in [~1,1] is equal
to j.

Although the functions v; are defined on the interval, they are easily
extended to the whole line using the right hand side of (9) as the definition
of the extension. The functions ; are orthogonal on both the interval [-1, 1]
and the real line (—o0, 00), and we set

/_11 ¥;(z) Yu(z) dz = &5, (12)

and

[ vl nie)da = (13)

j

We note that in the original papers [20, 16, 19] the functions are chosen to

be orthonormal on (—00, 00). ‘
The definition (8) implies that

et = {Z. Aj ¥i(x);(t) (14)

and if we keep approximately 2c¢/m + K log ¢ terms in (14), where K = K/(¢)
is a constant, we obtain a close approximation to ei*® for any positive €. This
is the most economical expansion of this type for the exponential.

The PSWF's have been used in signal processing for some time, especially
the first function, ¥g(z), since it provides the optimal window for a given
bandwidth in terms of concentration in the time-frequency domain. Yet,
their use has not been wide. In the next section we describe several new
developments that will provide a path for a wider use of these functions in
signal processing and numerical analysis.
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4.2 Generalized Gaussian Quadratures for Exponen-
tials

The generalized Gaussian quadratures for exponentials has been developed
recently [22, 6]. Within the tirst approach [22], the authors construct the
generalized Gaussian quadratures for the prolate spheroidal wave functions
using the fact that, for any n, the first n of these functions form a Chebyshev
system [14, 15]. For a given accuracy € and a choice of n, if follows from
(14) that such quadratures are also valid for exponentials. Alternatively, a
new type of the generalized Gaussian quadratures for exponentials has been
obtained directly [6]. These quadratures are parameterized by eigenvalues
of a Toeplitz matrix which is constructed from the trigonometric moments
of a positive measure. For a given accuracy e, selecting an eigenvalue close
to € yields an approximate quadrature for that accuracy. These quadratures
can be used to approximate and integrate other essentially bandlimited func- -
tions such as, for example, Bessel functions or the prolate spheroidal wave
functions.

Let us define the bandlimited functions with the bandlimit c as a class of
functions that can be represented via a linear combination of exponentials of
the form exp (ibz) with, for example, [*-bounded coefficients, where b is any
real number such that |b] < c.

It turns out that, for any accuracy € > 0 and any bandlimit ¢ > 0, there is
a set of M functions, {exp (icty )} ,, where the nodes tx = tx(e, ¢), [ti| <1
and the coefficients o = ax(b) are such that

| exp (ibz) - f: a(b) exp (ictxz)| < €. (15)
k=1

The set of functions {exp (ict; £)}}L, can be viewed as an approximate basis.

In order to find the nodes {t;} in (15), we solve the following problem
6], described here in a slightly more general setting than is needed to obtain
(15). Let us consider integrals of the form '

1
u(z) = / exp (2¢t z) dul(t), (16)
-1
where du(t) is a measure. Typically, du(t) = w(t) dt, where w is a weight
function, that is w is a real, non-negative, integrable function with [, w(r)dr >

0. To obtain (15) the weight is defined as w = 1.
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For a given bandlimit 2¢ > 0 and accuracy €* > 0, we approximate u(z)
on the interval [—1, 1] using the sum

M
i(z) = > weexp (2ctx z), (17)
k=1

where wy > 0 and M = M/(c, €2), so that
lu(z) — @(z)] < & for z€[-1,1]. (18)

The number of terms, M, is optimal. Solving this problem involves finding
the eigenvalues and eigenvectors of the Toeplitz matrix constructed using the
values of u(z) discretized at the equally spaced nodes and interpreted as the
trigonometric moments of a positive measure [6].

Once the nodes are computed, the set of functions {exp icty :z:)},c , can -
serve as an approximate basis on the interval [—1,1] in (15). Such bases can
be organized into a hierarchical structure similar to multiwavelets. We will
report these results elsewhere.

The representation in (15) retains the property of disjoint support similar
to that of a multiwavelet basis. On the other hand, it requires significantly
fewer terms than the representation with orthogonal polynomials. Also, one
can think of the bandlimit ¢ as an analogue of the degree in the case of
polynomials and, unlike in that case, there is no constraint on the bandwidth
~¢. This is because the distance between the nodes is O(1/c) and, thus,
the quadrature nodes do not significantly concentrate near the ends of the
interval as do, for example, the Legendre nodes. These properties of the
representations using exponentials lead to a number of new algorithms that
are being developed and will be presented elsewhere.

5 Spectral Deferred Corrections for Solution
of Ordinary Differential Equations

This is a relatively new method for solution of ordinary differential equations
[12], which shows great promise for further optimizing the computation of
satellite ephemerides. The basic idea is to first obtain a crude approximation
using a simple first-order method, for example an explicit Euler scheme, then
to iteratively reduce (correct) the error. Methods based on this approach
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are known collectively as deferred correction methods, and have been in
use for some time. However, in [12] some improvement over the classical
methods is introduced, namely the use of orthogonal polynomials to represent
the solution, together with spectral integration, which greatly increases the
stabilitv of high-order deferred correction methods. This approach leads
to methods of almost arbitrarily high order which require a relatively low
number of function calls in their implementation.

We have constructed a preliminary version of a spectral deferred correc-
tion code for the orbit propagation problem, and initial tests show promise.
Work is in progress towards developing a final version which is capable of
replacing current operational orbit propagation codes.

6 Transfer of Technology

The latest version of the B-spline cube model has been transferred to Space
Warfare Command (SWC) in Colorado Springs, to our point(s) of contact,
Joseph Liu and Mark Storz, both of SWC. A declassified copy of currently
operational code for solving ODES has been transferred to us, which allows
us to make direct comparisons with new codes we are considering.
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